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Peptide Variants of Viral CTL Epitopes Mediate Positive
Selection and Emigration of Ag-Specific Thymocytes In Vivo

Masha Fridkis-Hareli,*" Pedro A. Reche*" and EllisL. Reinherz* '

During development, thymocytes carrying TCRs mediating low-affinity interactions with MHC-bound self-peptides are positively
selected for export into the mature peripheral T lymphocyte pool. Thus, exogenous administration of certain altered peptide
ligands (APL) with reduced TCR affinity relative to cognate Ags may provide a tool to €licit maturation of desired TCR speci-
ficities. To test this “thymic vaccination” concept, we designed APL of the viral CTL epitopes gp33-41 and vesicular stomatitis
virus nucleoprotein octapeptide N52-59 relevant for the lymphocytic choriomeningitis virus-specific P14- and vesicular stomatitis
virus-specific N15-TCRs, respectively, and examined their effects on thymocytes in vivo using irradiation chimeras. Injection of
APL intoirradiated congenic (Ly-5.1) mice, reconstituted with T cell progenitorsfrom the bone marrow of P14 RAG2™/~ (Ly-5.2)
or N15 RAG2™/~ (Ly-5.2) transgenic mice, resulted in positive selection of T cells expressing the relevant specificity. Moreover,
the variants led to export of virus-specific T cellsto lymph nodes, but without inducing T cell proliferation. These findings show

that themature T cell repertoire can be altered by in vivo peptide administration through manipulation of thymic selection. The

Journal of Immunology, 2004, 173: 1140-1150.

aive T cells expressing a highly diverse TCR repertoire

are generated in the thymus from bone marrow (BM)3
lymphoid precursors (reviewed in Ref. 1). Upon entering
the thymus, T cell progenitors proliferate and undergo a complex
series of gene rearrangement events leading to cell surface TCR
expression and subsequent differentiation (reviewed in Refs. 2 and
3). It has been demonstrated that peptides bound to the MHC mol-
ecules within the thymus control both positive and negative selec-
tion (reviewed in Ref. 4). During selection of the TCR repertoire,
thymocytes that carry TCRs having low-&ffinity interactions with
MHC-bound self-peptides are positively selected, and are exported
into the pool of mature peripheral lymphocytes. In contrast, thy-
mocytes bearing those TCRs that recognize self-peptides with high
affinity are eliminated (3).

Single amino acid substitutionsin either the MHC or the peptide
dramatically alter recognition by T cells (5, 6). Analysis of crystal
structures of a8 TCR/class | MHC complexes have demonstrated
that peptide specificity of T cells is primarily determined by the
interaction between the CDR of the TCR-Va and -V 8 domains
and the peptide side chains, which protrude of the peptide-binding
groove of MHC molecules toward the two TCR-CDRS3 loops.
Structural studies of peptide/MHC complexes (pMHC) have pro-
vided detailed information about the conformation of peptide when
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bound to MHC molecules (reviewed in Refs. 7 and 8). The pep-
tide-binding groove of MHC moleculesis composed of two helices
on top of an eight-strand anti-parallel B-pleated sheet. The peptide-
binding groove contains various binding pockets, the shape and
charge of which are dependent on the highly polymorphic amino
acids characteristic of a given MHC alele, which in turn selec-
tively determines the spectrum of peptides that may bind to it
(reviewed in Ref. 9 and references therein).

Much of the recent work on thymic selection was influenced by
experiments that examined T cell responses to peptide analogues
derived from the antigenic peptide by substitution of amino acid
residues involved in interactions with the TCR. Such peptide an-
alogues, so-called altered peptide ligands (APL), can generate
qualitatively different T cell responses compared with those pro-
duced by the antigenic peptide (10). In particular, some APL were
shown to act as TCR antagonists and inhibit T cell responsesto the
antigenic peptide (11). Several studies have shown that antagonist
peptides are capable of positively selecting (12, 13), negatively
selecting (14), or otherwise altering (15) selection of thymocytes.

Thymic selection processes have aso been addressed in struc-
tural terms using TCR-transgenic mice. For example, in N15 trans-
genic mice carrying a TCR specific for the vesicular stomatitis
virus nucleoprotein octapeptide N52-59 (V SV 8) in the context of
H-2KP®, aweak agonist peptide variant inducing positive selection
has been identified (16). This variant is identical with the VSV8
peptide except for substitution of leucine for valine at the P4 pep-
tide residue (L4). The cognate viral peptide ligand, VSV 8, triggers
negative selection. Another TCR transgenic mouse model, P14,
expressing a TCR specific for the DP-restricted immunodominant
lymphocytic choriomeningitis virus epitope gp33—41 has been de-
veloped (17). This system has been widely used to study the effect
on thymocyte development of mutations in gp33—41 peptides that
interact either with the binding pockets of D (18) or with the TCR
contact residues, using fetal thymic organ culture (FTOC; re-
viewed in Ref. 19). Thecrystal structure of gp33/H-2DP shows that
conserved single mutations at positions 4 or 6 of the peptide are
solvent exposed and presumably function as TCR contacts (20,
21). In yet a third TCR transgenic mouse model, F5, where the
TCR recognizes a nucleoprotein peptide of the influenza virus
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NP366-379 in the context of H-2D® (22, 23), the peptide antag-
onist mediated positive selection in FTOC (23, 24), whereas the
cognate peptide itself led to deletion of CD4"CD8™ (double-pos-
itive (DP)) thymocytes (25).

Variants of peptides derived from infectious agents or tumor
Ags could, in principle, mediate positive selection and export of
specific T cells from the thymus. As such, these APL might be
candidates for manipulating the thymic repertoire in vivo, control-
ling the generation of naive and memory T cells within the pe-
ripheral lymphoid compartment. This “thymic vaccination ap-
proach” would aim to deliver, by parentera administration,
positively selecting APL of cognate Ags to elicit maturation of
thymocytes with desired TCR specificities at the level of thymic
repertoire development. Expanding repertoire generation has enor-
mous potential in aiding the organism’s fight against infections or
in affording tumor immunity. To test this concept, we have de-
signed variants of gp33—41 and VSV 8 peptides with substitutions
at the amino acid residues interacting with the TCR and examined
their effects on thymocyte maturation and emigration in vivo in
two well-defined systems.

Materials and M ethods
Mice

N15 tg*’* RAG2~/~ H-2° mice were generated as described previously
(26). P14 tg™* RAG2'~ H-2" transgenic mice were obtained from Tac-
onic Farms (Germantown, NY). Congenic strains C57BL/6 (Ly-5.2) and
C57BL/6 (Ly-5.1) were obtained from The Jackson Laboratory (Bar Har-
bor, ME). Mice were sex matched and used at 3—4 wk of age for peptide
injections and at 7-11 wk of age for other manipulations. Mice were main-
tained and bred under sterile barrier conditions at the animal facility of the
Dana-Farber Cancer Institute (Boston, MA).

Peptide synthesis

The peptide gp33—41 (KAVYNFATC) and its variants, Y4S/F6A (KAVS
NAATC) and A7E (KAVYNFETC), were synthesized by standard solid
phase methods with the modification of C to M (C9M) to prevent dimer
formation mediated by free sulfhydryl-groups. N52-59 (VSV8,
RGYVYQGL; Ref. 27) and its variant, L4, (RGYLY QGL) were aso made
and all peptides purified by reverse phase HPLC (Hewlett Packard HPLC
1100; Hewlett Packard, Palo Alto, CA).

Abs and flow cytometric analysis

All anti-mouse mAbs were purchased from BD Pharmingen (San Diego,
CA). For flow cytometry, single cell thymocyte, splenocyte, or lymph node
suspensions were prepared in PBS containing 2% FCS and 0.05% NaNs.
Cellswere stained at 1 X 10° cells per 100 ul in PBS (2% FCS and 0.05%
NaN;) containing the Abs at saturating concentrations. Phenotypes and
proportions of cell subsets were analyzed by three-color flow cytometry
using a FACScan (BD Biosciences, San Jose, CA) and the CellQuest pro-
gram (BD Biosciences). Dead cells were excluded from the analysis by
forward and side scatter gating.

For sorting, BM cells or splenocytes from N15 RAG2~/~ and P14
RAG2~/~ mice were prepared as single-cell suspensions and stained at
30 X 10° cells per milliliter in PBS containing the following mAbs at
saturating concentrations: CyChrome-conjugated anti-CD8 and PE-conju-
gated anti-CD44 Abs were used to sort CD8"CD44~ splenocytes; for BM,
FITC-conjugated anti-CD4, -CD8«, -CD45R/B220, -Ly-6G, and -CD11b
were used to sort cells negative for the mixture of the above Abs. Cells
were sorted under sterile conditions into tubes containing PBS: 2% FCS
and 0.5% gentamicin using a MoFlo (DakoCytomation, Carpenteria, CA)
and the Summit program (DakoCytomation).

Injection of cells and peptides

Sorted splenocytes or BM cells (1 X 10° cells per 100 ul PBS/2% FCS per
mouse) were transferred i.v. into irradiated (700 rad, split dose 450 and 250
at a 3-h interval) B6 Ly-5.1 mice severa hours after irradiation (**'Cs
source). Peptides (25 ng/100 ul PBS per mouse) were injected i.v. 4 days
after the transfer of splenocytes, or 3—4 wk after the transfer of BM cells.
N15-specific peptides (VSV8 and L4) were injected once, whereas P14-
related peptides (gp33—41.gy, YAS/IF6A gy, and A7E.q\) Were injected
once or three times every 24 h.
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Tetramer preparation and staining

Tetramers consisting of complexes of biotinylated H-2DP refolded with the
gp33—41gy, YAS/IFEA com, OF ATEq, peptides were produced using the
method previously described (28). For immunofluorescence analysis, 1 X
10° cells (thymocytes, splenocytes, or lymph node cells) were incubated
with FITC anti-CD8a mAb for 1 h at 4°C, followed by addition of 0.5 ug
of PE-labeled tetramers gp33—41.gy,/D°, Y 4S/F6A cp, /D, or A7Eop,/DP
and CyChrome-anti-CD4 and incubation for another hour. After two
washes, cells were analyzed on a FACScan as described above.

Miscellaneous assays

Assays for RMA-S H-2DP stabilization, apoptosis, proliferation, BrdU,
CFSE, and intracellular cytokine staining were done as detailed
elsewhere (29-31).

Results
Design and initial characterization of gp33—41 variant peptides

gp33-41 is the cognate peptide Ag of the P14 TCR (Va2 and
VB8) and triggers negative selection of P14-bearing DP thymo-
cytes (reviewed in Ref. 19). Structural variants of gp33—41 were
designed to influence the outcome of thymocyte selection by al-
tering the affinity of the pMHC ligand interactions with the TCR.
No change was made in the peptide anchor residues that occupy
the binding pockets of H-2DP, thus ensuring proper peptide pre-
sentation in the context of MHC. Indeed, the crystal structure of
the gp33—41/H-2DP complex shows that the side chains of amino
acid residues at peptide positions pl, p4, p6, p7, and p8 are ex-
posed to the solvent (20, 21). To design a variant with reduced
affinity for the P14 TCR, we have introduced two types of muta-
tions: in one mutant, both centrally disposed p4 and p6 residues
have been modified (Tyr (Y) to Ser (S) at p4 and Phe (F) to Ala(A)
at p6). In the other, Ala (A) was substituted with Glu (E) at p7.
Both variants were synthesized in two aternative forms, one with
the natural amino acid Cys (C) at the anchor residue p9, and the
other with Met (M) at p9, thus avoiding any potential peptide
dimerization mediated by free SH-groups. This modification was
previously shown to stabilize the binding of gp33—41 peptide to
H-2DP (32). The sequence of gp33—41 and the variant peptides and
the relevant gp33-41DP® structure are shown in Fig. 1A.

Next, we verified whether these gp33—41 variant peptides were
able to bind to H-2D° molecules using RMA-S cells. To this end,
RMA-S cells were incubated with the peptides listed in Fig. 1A,
and the extent of staining with anti-H-2D® Abs on the surface of
peptide-loaded RMA-S cells was measured by FACS. The binding
profiles are shown in Fig. 1B. Variant peptides Y 4S/F6A g, and
AT7Ecq,, bound equally well to H-2D" molecules, and in a similar
fashion compared with the cognate gp33-41.q,, epitope, suggest-
ing that amino acid substitutions at peptide residues p4, p6, and p7
indeed do not affect peptide binding, and, by extension, peptide
presentation to T cells.

To evauate the functional potential of T cellsin mice injected
with gp33—41 variant peptides, splenocyte, and lymph node T cell
responses to the above peptides were examined for proliferation
and cytokine secretion. Both splenocytes (Fig. 1C) and lymph
node T cells (data not shown) proliferated in vitro in response to
the gp33-41,,, peptide, reaching a peak response at 10~ *° M.
The highest response to the A7E,, mutant peptide was achieved
at the peptide concentration of 1078 M (Fig. 1C). It should be
noted that when a similar assay was performed using the gp33—-41
variant peptides, the potency of either of these peptides at the peak
of response was reduced by two logs relative to gp33—4lcgy,
namely, 108 M for the gp33—41 and 10~ ° M for the A7E mutant
(data not shown). In contrast, incubation of T cells with the Y4S/
F6A com Peptide resulted in essentially no response at any peptide
concentration, possibly due to low affinity interactions with the
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FIGURE 1. Design and initial characterization of gp33-41. A, Structura basis for peptide design. The figures show the three-dimensional rendition of
the gp133-142 peptide in complex with the D® molecule (worm representation; Brookhaven Protein Data Bank (PDB):1FG2) and a hypothetical TCR
(surface representation). Positions of the gp133-142 peptide that can potentially interact with the TCR V domains are labeled. TCR chosen to render this
figure correspond to that of the single-chain variable fragment BM3.3 TCR in complex with the Pom1/K® (peptide/MHC) complex (PDB:1FO0). A
sequence alignment of the gp133-142 peptide and derived APLs is shown next to the worm representation of the D® molecule. Amino acid differences are
shaded in black, and peptide anchor and peptide TCR-contact residues are indicated with triangles, below and above the alignment, respectively. B,
gp33—41gy variant peptides bind to H-2DP molecules on RMA-S cells with similar affinities. RMA-S cells were incubated with the above peptides at the
indicated concentrations, followed by immunofluorescence assay using the H-2DP-specific mAb, HB27. Results are represented as mean + SD of four
independent experiments. C, Lack of proliferation of naive P14 T cells in response to the Y4S/F6A g\, Variant. Splenocytes were incubated in vitro with
the indicated concentrations of gp33—41cg,, variant peptides. Mean of triplicate cultures is shown. Results are representative of four independent exper-
iments. D, Lack of IFN-y and IL-2 production upon stimulation of naive T cells from P14 RAG2™/~ mice by Y4S/F6A g, Variant. Splenocytes were
incubated in vitro with gp33-41,,, variant peptides, followed by intracellular staining protocol. Percentages of cytokine-producing SP CD8 cells were

determined by flow cytometry. Results are representative of three independent experiments.

TCR. Consistent with the proliferation data, an assay for intracel-
lular cytokine staining with anti-IFN-+y or -IL-2 Abs showed the
highest levels of both cytokines when splenocytes were incubated
with the gp33-41lc.gy, dlightly lower levels in the presence of
ATEg\ and no cytokine secretion in the presence of Y4S/F6A <o\
peptide (Fig. 1D). Collectively, our results suggest that the Y4S/
F6A o\ Variant peptide (and Y4S/F6A, data not shown) does not
elicit responses of mature T cells from P14 RAG2™/~ mice.

Effect of gp33—41 variant peptides on thymocyte development in
P14 RAG2™'~ mice

To examine the effect of gp33—41 variant peptides on thymocyte
development in P14 RAG2 /'~ mice, we developed a protocol for
peptide injection in vivo. Earlier studies using N15 RAG2 ™/~
transgenic mice showed that a single i.v. injection of VSV8 pep-
tide leads to a severe depletion of DP thymocytes, whereas a vari-
ant of VSV, L4 (V4L mutation at p4) mediates positive selection
in FTOC (16). Here, in contrast, a single injection of gp33—41.q,,

peptide into P14 RAG2 ™/~ transgenic mice caused only a modest
reduction in the percentage of the DP thymocytes, athough the
total number of thymocytes was reduced by approximately two-
thirds (Fig. 2A, upper panel). Note that the down-regulation of
both CD4 and CD8 on the DP thymocytes due to impending clonal
deletion causes “spillover” into a single-positive (SP) CD8 gate,
resulting in a higher percentage of SP CD8 cells as compared with
the PBS control. However, injection of the double mutant Y4S/
F6A com led to an unexpected tripling of total cell numbers, with-
out perturbation in subset distribution. In contrast, A7Eq,, had no
effect on the thymocyte number and only a dlight increase in the
percentages of DP or SP CD8 thymocyte subsets.

To next investigate the effect of variant peptides on the expres-
sion of thymocyte surface markers characteristic of maturation
and/or activation states, cells were examined by triple-color im-
munofluorescence using various mAbs. A representative staining
profile of SP CD8 thymocytes for the expression of B, integrin, a
marker linked to thymocyte emigration (33), is shown in Fig. 2A
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FIGURE 2. Modulation of thymocyte number and phenotype in P14 RAG2~'~ mice by the Y4S/F6A g, Variant. A, Triple-staining profiles of thy-
mocytes from mice injected with gp33-41 variants. Upper panel, the CD4/CD8« profiles in thymocytes are atered in the presence of gp33—41 variant
peptides. Thymocytes from P14 RAG2™'~ mice at 3-4 wk of age, injected with gp33—-41.,, variants 18 h earlier (25 pg i.v.), were stained with
CyChrome-anti-CD4, PE-anti-CD8« FITC-anti-B; integrin. The percentages of DP and SP CD8 subsets after gating on 50,000 live cells are indicated.
Lower panel, The histograms of B, integrin expression on the gated SP CD8 thymocytes. The numbers represent the percentages of 3, integrin-positive
cells. B, Expression of several T cell markers is atered on SP CD8 thymocytes from mice injected with gp33—41c,,, variant peptides. Thymocytes were
stained with CyChrome-anti-CD4, PE-anti-CD8«, and FITC-anti-CD25, -CD44, -CD62L, -CD69, -8, integrin, -V 38, -CD8p, and -CD5. Arrows up and
down indicate up-regulation and down-regulation, respectively, as expressed by change in the MFI and/or percentage of positive cells; n.c., no change in
the expression was detected as compared with control mice (injected with PBS). Results are representative of four independent experiments.

(lower panel). Injection with the gp33-41.,,, peptide led to a
decrease in the 3, integrin expression level on SP CD8 thymocytes
as compared with the control PBS-injected mouse (mean fluores-
cence intensity (MFI) 50 vs 108, respectively), despite essentially
no change in the percentage (40—41%) of anti-B-, integrin reactive
cells. Both Y4S/F6A g\, and A7Eg,, induced an increase in the
percentage of this thymocyte population (61-70%) without chang-
ing B, integrin levels on individual thymocytes. A complete anal-
ysis of thymocyte markersis summarized in Fig. 2B. Higher levels
of CD44 and CD69 were observed on SP CD8 thymocytes injected
with the gp33—41.q,, peptide. In contrast, Y4S/F6A o, had no
effect on the above markers, but V8 (P14-specific TCR), B in-
tegrin, and CD8p expression were up-regulated. There was an in-
crease in the expression of CD44, CD8p, and 3, integrin on SP
CD8 thymocytes of mice injected with the A7Eq, variant. These
results indicated that a single injection of gp33—-41.g,, and Y4S/
F6A o\, affected both the cell numbers and expression of thymocyte
markers, suggestive of early events in thymocyte activation. A7E in-
jection did not dter cell numbers, but affected thymocyte marker ex-
pression. Such phenotypic changes may be reflective of molecular up-
or down-regulation and/or selection of cellular subpopulations. Al-
though not shown, dterations in cellular phenotypes were evident at
the earliest interval examined postinjection (6 h) as well.

While reducing absolute cell number, a single dose of gp33-41
had little influence on the percentage of DP thymocytes in P14
RAG2 '~ mice. Therefore, we have injected gp33-41 variants
every 24 h for 3 days and found that under these conditions the DP
thymocyte depletion was pronounced, leading to a nearly total
elimination of these thymocytes (Fig. 3A). This observation is con-
sistent with that made in another H-2DP-restricted TCR transgenic
system, F5, where multiple peptide injections were also required
(34). In contrast, amost total elimination of N15 RAG2 '~ DP
thymocytes was achieved by a single KP-binding VSV8 cognate

peptide injection (Refs. 16 and 26 and data not shown). Whether
this difference is a result of greater CD8a3 coreceptor binding to
H-2KP vs D (28), the higher copy number of peptide complexes
with K® vs D molecules (28), or TCR affinity differences remains
to be determined. Surprisingly, injection with the Y4S/F6A g\
mutant resulted in a significant increase in the total number of
thymocytes as well as DP thymocyte subpopulation. In contrast,
the A7E.q,, Variant had no effect on the thymocyte counts (Fig.
3A). The expression of the examined phenotypic markers on SP
CD8 thymocytes followed asimilar trend after third injection (data
not shown) as compared with a single peptide injection (Fig. 2B).
The possibility that the unusual increase in the number of DP
thymocytes following exposure to the Y4S/F6A peptide might be
due to cellular proliferation and attendant DNA synthesis was ex-
amined by BrdU incorporation assay as shown in Fig. 3B. As ex-
pected, lower BrdU incorporation was detected in each of the thy-
mocyte subpopulations (double-negative (DN), DP, and SP CD8)
of mice injected with gp33—41.,,,, supporting previous observa-
tions on negative selection and apoptosis by thisligand (19). More
importantly, no significant difference in the amount of BrdU in-
corporation was found in thymocytes of mice injected with either
Y4S/IF6A oy OF ATEcqy Variants, compared with the control
PBS-injected mice. As a consequence, we wondered whether Y 4S/
F6A peptide might increase the DP subpopulation by preventing
apoptosis. To test this possibility, staining of cells from mice in-
jected with gp33—41 variants with anti-annexin V-mAb was per-
formed (Fig. 4). Indeed, there was an increase in the percentage of
annexin V" cells (12%) in mice injected with gp33-41.gy, PeP-
tide, suggestive of apoptosis. In contrast, no such phenomenon was
observed upon injection of either Y4S/F6A g\, OF A7E g, Vari-
ants; in those cases, values were comparable to the control mouse.
We reasoned that if the Y4S/F6A peptide competes with apopto-
sis-inducing peptides for binding to H-2D" molecules on the cell
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FIGURE 3. Quantitative changes in thymocyte subpopulations following multiple injections of the Y4S/F6A o, variant. A, Cell numbers of thymocyte
subpopulations in P14 RAG2 ™/~ mice. P14 RAG2 '~ mice at 3-4 wk of age were injected i.v. three times every 24 h with 25 ug of each peptide and
sacrificed 18 h following the third injection. Thymocytes were double-stained with CyChrome-anti-CD4 and PE-anti-CD8«, and the expression of CD4
and CD8a was detected by flow cytometry after gating on 50,000 cells. The distributions of log,,, cell counts X10° are shown in box plots. The box in
the plot extends from the first to the third quartiles of the data; the line in the middle of the box plot denotes the median. The lines above and below the
boxes extend to the largest observation (respectively, smallest observation) that is below the third quartile plus 1.5X the interquartile range (respectively,
the largest observation above the first quartile minus 1.5X the interquartile range). Individua points shown in the graphs are >1.5X the interquartile range
from the nearest quartile. All plots were drawn in Stata version 8.0 for MS Windows (Microsoft, Redmond, WA). Data represent 10—-12 independent
experiments. B, gp33—41.4y Variant peptides do not alter DNA synthesisin residual thymocytes. P14 RAG2 ™/~ mice were injected three times, asindicated
in A. On the day of the last injection, mice were given 1 mg of BrdU twice at a 4-h interval, i.p. 18 h later, and thymocytes were triple-stained with
CyChrome-anti-CD4, PE-anti-CD8e, and FITC-anti-BrdU. The histograms of BrdU staining on the gated DN, DP, and SP CD8 thymocytes are shown.
The numbers represent the percentages of BrdU-positive cells. Results are representative of three independent experiments.

surface, then Y4S/F6A may “rescue” thymocytes from undergoing formed in vivo. The results in Fig. 5 show that, as predicted, in-
cell death. Competitive binding assays, in which P14 RAG2 ™/~ creasing the amount of Y4S/F6A peptide in the injection mixture
mice were injected with the mixtures of the negatively selecting resulted in a higher number of total and DP thymocytes. Thus, we
cognate peptide gp33—41,,, and Y4S/F6A -, Variant, were per- infer that the Y4S/F6A variant may compete with other negatively

Peptide: gp33-41 coM Y4S/F6A CoM A7 Ech

2

Annexin V (log)

FIGURE 4. Decreased apoptotic cell death in thymocytes of P14 RAG2 ™/~ mice injected with the Y4S/F6A gy, Variant 6 h previoudly. Treatment of
P14 RAG2 '~ mice with gp33—41.gy resulted in reduction of thymocyte number (without gp33—41cgy, 4.6 X 107 cells per thymus; with gp33—41cgy,
3.2 X 107 cells per thymus). By contrast, P14 RAG2™/~ mice injected with Y 4S/F6A g, variant showed increase in the number of thymocytes (7 X 107
cells per thymus), whereas injection with A7E.,, variant resulted in little changes in thymocyte numbers (4 X 107 cells per thymus). Total thymocytes
were stained with FITC-anti-annexin V and assayed by flow cytometry. Dead cells were gated out using propidium iodide to reveal the proportion of live
thymocytes undergoing early stages of apoptosis. The histograms of annexin V staining on the propidium iodide-negative live thymocytes are shown.
Histograms of PBS-injected thymocyte staining (dotted lines) were superimposed on those of peptide-treated thymocyte profiles (solid lines). The numbers
represent the percentages of annexin V" apoptotic thymocytes in mice injected with gp33-41,,, variant peptides.
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FIGURE 5. The Y4S/F6A g, Variant peptide inhibits negative selection of thymocytes in vivo. P14 RAG2~'~ mice were injected three times with
mixtures of gp33—41.4,, and Y 4S/F6A o\ Variant at indicated concentrations. Eighteen hours after the third injection, thymocytes were double-stained with
the CyChrome-anti-CD4 and FITC-anti-CD8a. The percentages of DP and SP CD8 subsets after gating on 50,000 live cells are indicated.

selecting peptides for binding to H-2D° molecules expressed on
thymic stroma either by binding to “empty” surface MHC class |
molecules or, perhaps, by a cross-presentation mechanism (35).

YAS/F6A peptide interacts with the P14 TCR with low affinity

To study the relative avidity of interactions between the P14 TCR
and the gp33—41 variant peptides bound to H-2D° molecules, we
prepared tetramers of H-2D® with each of the above peptides, and
performed quantitative immunofluorescence analysis of thymo-
cytes, splenocytes, and lymph node cells from P14 RAG2 ™/~
mice. The results of MFI staining of SP CD8 thymocytes from P14
RAG2 ™'~ mice with the three tetramers at different concentrations
are depicted in Fig. 6. The inset shows representative staining pro-
files at a single comparable concentration of tetramer. Clearly, the
strongest binding occurs with the tetramer containing the gp33—
41\, peptide, as reflected by higher fluorescence intensity levels.
Tetramer containing A7E.g,, mutant bound with lower affinity,
whereas no detectable binding was observed with the tetramer re-
folded with the Y4S/F6A 4\, Variant peptide. These resultsin con-
junction with functional data (Fig. 1, B-D) suggest that the Y4/
F6A o Mutant must interact with the P14 TCR with extremely
poor affinity, if at all.

Development of an in vivo model for thymocyte selection and
emigration

To date, the processes of T cell development involving the inter-
actions between the P14 TCR and the gp33-41 variant peptides
have been studied exclusively in the transgenic mouse system.
Although the homogeneity of TCR-expressing cells on the
RAG2 '~ background is an advantage for specific analysis, it
remains difficult to identify the numerically small population of
recent thymic emigrants (RTE). To overcome this problem, we
have used irradiation chimeras using congenic mouse strains (ex-
pressing the CD45.1 marker in B6 and CD45.2 in P14 and N15
transgenic mice). Previously, using N15 transgenic mice carrying
a TCR specific for the VSV8 peptide in the context of H-2K®, a
weak agonist peptide variant L4, with the substitution of leucine
for valine at the P4 peptide residue, inducing positive selection has
been identified (16). We wondered whether interactions between
the low affinity ligands, Y4S/F6A and L4, and their specific TCRs
would result in thymic positive selection and emigration. Thus,
lineage-negative BM precursors of P14 or N15 RAG2™/~ mice
(donor) were injected into irradiated congenic B6 mice (recipient)
and the development of donor-type cells was monitored weekly by
immunofluorescence staining and multicolor FACS analysis. As
shown in Fig. 7, donor-type P14-specific SP CD8 thymocytes ap-
peared in the thymus 3-4 wk after BM injection, comprising

~70% of the SP CD8 subset by wk 5 (Fig. 7, upper panel). In
contrast, aimost no periphera donor T cells have been detected in
irradiation chimeras at 3-4 wk after BM injection (middle and
lower panels, Fig. 7), although such cells are identifiable between
4 and 5 wk after injection. When BM cells from N15 RAG2 ™/~
mice were sorted and injected into irradiated B6 recipients, and the
development of donor-type T cells was examined in an analogous
manner, similar kinetics of maturation and emigration of N15
RAG2 '~ -specific SP CD8 T cells were found (data not shown).
Therefore, we administered the selecting peptides to the recipient
at 3—-4 wk after donor BM injection and assessed whether such
exposure might influence the subsequent selection and emigration
processes of donor thymocytes.

Y4SF6A and L4 variants of viral epitopes mediate positive
selection and emigration of thymocytes

Between 3—-4 wk post-BM reconstitution, gp33—41 and its variant
peptides were injected daily for 3 days and animals examined 24 h
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FIGURE 6. The Y4S/F6A g, Variant peptide in complex with D® does
not bind to the P14 TCR with sufficient affinity to be measured by tetramer
staining. Recombinant class | H-2D" and 3,m proteins were refolded with
each of the gp33-41c,,, variant peptides, biotinylated, and tetramerized
using PE-avidin. Thymocytes from P14 RAG2~/~ mice at 4 wk of age
were triple-stained with CyChrome-anti-CD4, FITC-anti-CD8«, and a PE-
tetramer of one or another of the gp33-41 variant peptides at indicated
dilutions. MFI of tetramer staining on gated SP CD8 thymocytes is shown.
The inset shows histogram profiles of SP CD8 thymocyte staining with
each of the tetramers at 1/50 dilution.
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FIGURE 7. Kinetics of T cell development in irradiation chimeras of
B6 Ly-5.1 mice reconstituted with BM from P14 RAG2 '~ (Ly-5.2) mice.
B6 Ly-5.1 mice at 8 wk of age were injected with lineage-negative BM
cells from P14 RAG2 '~ donors (1 X 10° cells per mouse) 2—4 h follow-
ing irradiation (7 Gy). Thymuses, spleens, and lymph nodes were obtained
weekly and cells were triple-stained with CyChrome-anti-CD4, PE-anti-
CD8q, and either FITC-anti-CD45.1 or FITC-anti-CD45.2. Results repre-
sent expression of donor (Ly-5.2) and recipient (Ly-5.1) phenotype on
thymocytes, splenocytes, and lymph node cells. Mean = SD of two to four
independent experiments is shown.

later. Fig. 8A, upper four panels, shows the anti-CD4 and anti-CD8«
profiles of dl thymocytes in the recipient (both donor and host). Fig.
8A, lower eight panels, enumerate the donor (anti-CD45.2 reactive)
cellsin the DP and SP CD8 subpopulation as gated in the upper pand,
with the absolute number of thymocytes given in the Fig. 8 inset
(right). The number of thymocytes in irradiation chimeras injected
with YASF6A o\, Was highest, whereas that of gp33—41.q,-injected
mice was lowest. This difference recapitulates the effect of gp33—
41\, vaiant peptides vs gp33—41.g,, on thymocytes from P14
RAG2 /™ transgenic mice. Fig. 8A, inset, shows that the lowest DP
numbers are in irradiation chimeras injected with gp33-41,, pep-
tide, whereas DP numbers are increased in mice injected with the
Y4S/F6A g\, Variant. The number of SP CD8 thymocytes was also
highest in chimeras injected with Y4S/F6A -\, Variant peptide (Fig.
8A, inset), suggesting that this ligand mediated positive selection of
P14 RAG2 '~ -specific T cells. Astheincreasein thymocyte numbers
exceeds the donor-engrafted population, injection of Y4S/F6A o\,
peptide may lead to the rescue of certain nontransgenic thymocytes
from negative selection as well.

To appreciate whether APL might function in an analogous
manner in other systems to modul ate selection, we have generated
N15 RAG2 '~ -B6 irradiation chimeras, injected either VSV, L4,
or PBS and subjected the animals to comparable analysis. Here, as
well, the number of thymocytes in irradiation chimeras injected
with L4 was highest, whereas that of VSV8-injected mice was

THYMIC VACCINATION IN VIVO

lowest (Fig. 8B, inset), similarly to the effect of gp33—41 variant
peptides on thymocytes from P14 RAG2~'~-B6 chimeras. The
CD4/CD8 donor thymocyte profiles (Fig. 8B, lower panel) showed
the lowest percentage of DP and SP CD8 thymocytesin irradiation
chimeras injected with VSV8 peptide, compared with mice in-
jected with L4 or with PBS. In contrast, the number of both DP and
SP CD8 donor thymocytes was highest in chimeras injected with
L4 variant peptide, consistent with positive selection.

To determine whether Y4AS/F6A and L4 lead to emigration of SP
CD8 thymocytes from the thymus to the periphery, spleensand lymph
nodes from the same P14 RAG2 '~-B6 and N15 RAG2 /-
B6 irradiation chimeras analyzed in Fig. 8 were examined using
triple-color immunofluorescence with anti-CD45.2, anti-CD8a,
and anti-Va2 or -VB5 mAbs. The results are represented in Fig.
9A, where the percentages of donor T cellsin the host lymph nodes
of P14 RAG2 ’~-B6 irradiation chimeras injected with gp33—
41, variant peptides are shown. Note that treatment with gp33—
41, leads to activation of the cognate P14 T cells, as judged by
their size increase (Fig. 9A, upper panel) and down-regulation of
the TCR (Va2; Fig. 9A, lower panel), in line with previous ob-
servationsin other TCR transgenic models (25). The greatest num-
ber of donor-type CD45.2"CD8"Va2" T cells (Fig. 9A, inset)
was in the lymph nodes of Y4S/F6A g\ -injected chimeras, sug-
gesting that donor-type thymocytes developing in the presence of
Y 4S/F6A o\, Mature and emigrate to the lymph nodes. Similar
increase in the numbers of donor-type cells in lymph nodes was
observed 9 wk after injection of YAS/F6A g, peptide (data not
shown). The functional analysis of donor-type CD8* lymph node
T cellsinirradiation chimeras injected with the positively selecting
YAS/F6A o\ peptide showed ~2-fold higher proliferation levels
in response to the cognate peptide gp33—41.,,, in vitro, compared
with cells from PBS control-injected chimeric mice, reflecting the
2-fold difference in the number of donor-type CD8* T cells in
lymph nodes of chimeras injected with the Y4S/F6A <, peptide
(data not shown). Note that Y4S/F6A g\ peptide induces little
emigration to spleen relative to the PBS control. In contrast, in
N15 RAG2 '~ -B6 irradiation chimeras injected with the L4 vari-
ant, higher CD8%V5.2" donor-type T cell numbers were ob-
served both in lymph nodes and spleens, severa days (Fig. 9B,
inset) or 9 wk (data not shown) after L4 injection. The possible
basis for this difference is described below, perhaps related to dif-
ferential K® vs D peptide presentation.

Mature donor-type T cells do not proliferate in response to
YAS/F6A or L4 variant peptides in vivo

To investigate the basis for the higher T cell numbers of the donor
phenotype in the peripheral lymphoid tissues of mice injected with
the YAS/F6A or L4 peptides, we measured cell divisions in re-
sponse to the above peptides in vivo. Sorted CD44~CD8™ spleno-
cytes of P14 or N15 origin were |abeled with CFSE before transfer
into irradiated recipient congenic hosts. Four days later, the time
interval allowing cells to settle in the peripheral organs, peptides
were injected, and spleens and lymph nodes taken for FACS stain-
ing 3—4 days after the peptide injection. CFSE allowed assessment
of the extent of proliferation of individua transferred T cells, as
previously described (31). Asshown in Fig. 10A, the percentage of
CFSE*CD8™" cells was lowest in lymph nodes of irradiation chi-
meras injected with the gp33-41.,,, peptide, with no brightly
CFSE™" cells remaining, suggesting that naive P14-specific T cells
had undergone proliferation and activation-induced cell death
(AICD) in response to the gp33-41.g, ligand. In contrast, the
percentage of CFSE™CD8™ T cellsin mice injected with the Y 45
F6A <om Peptide was similar to the control PBS-injected mice,
implying that this peptide caused no T cell expansion. In chimeras
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FIGURE 8. Y4S/F6A g, and L4 variants of viral epitopes mediate positive selection of thymocytes. Irradiated (7 Gy) B6 Ly-5.1 mice (8—10 wk of age)
were injected i.v. with 25 ug of each peptide ~4 wk after BM reconstitution. Thymocytes were triple-stained with CyChrome-anti-CD4, PE-anti-CD8«,
and either FITC-anti-CD45.1 or FITC-anti-CD45.2. A, Upper panel, the CD4/CD8« profiles in thymuses reconstituted with P14 RAG2™~'~-derived BM
progenitors as affected by gp33—41 (C9M) variant peptides. The percentages of DP and SP CD8 subsets after gating on 50,000 live cells are indicated. The
histograms are of the donor phenotype (CD45.2) expression on the gated DP (middle panel), or SP CD8 (lower panel) thymocytes. The numbers represent
the percentages of CD45.2-positive cells. Theinset (right) shows absolute numbers of donor DP and SP CD8 subpopulations, based on the total thymocyte
counts and the percentages of CD45.2-positive cells. Asterisks indicate p < 0.05 relative to PBS control according to Student’s t test. Results represent
mean = SD of three independent experiments. B, The CD4/CD8« profiles (upper panel), histograms of the donor phenotype (CD45.2) expression on the
gated DP (middle panel) and SP CD8 (lower panel) thymocytesin thymuses reconstituted with N15 RAG2~/~-derived BM progenitors as affected by VSV8
and its variant L4 peptide. Other details asin A.
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FIGURE 9. The Y4S/F6A g, Variant leads to increased emigration of CD45.2"CD8"Va2* T cells to the lymph nodes of irradiation chimeras. Lymph
node cells from Fig. 8 animals were triple-stained with CyChrome-anti-CD8«, PE-anti-V a2, and either FITC-anti-CD45.1 or FITC-anti-CD45.2. A, Upper
panel, the dot plot profiles of forward scatter/CD45.2 in lymph nodes of irradiation chimeras reconstituted with P14 RAG2~/~-derived BM progenitors as
affected by gp33-41cq, variant peptides. The percentages of donor CD45.2* T cells after gating on 25,000 live cells are indicated. Lower panel, The
CD8a/V a2 dot plot profiles of the gated CD45.2" T cells. The numbers represent the percentages of CD8a™"V a2 -positive cells. Inset, Absolute numbers
of donor CD45.2" CD8a*Va2* splenocytes and lymph node cells, based on the total cell counts and the percentages of CD45.2-positive cells. Asterisks
indicate p < 0.05 relative to PBS control according to the Student’ s t test. Results represent mean = SD of three independent experiments. B, The dot plot
profiles of forward scatter/CD45.2 (upper panel), and the CD8a/V 35 dot plot profiles of the gated CD45.2* T cells (lower panel) in lymph nodes of
irradiation chimeras reconstituted with N15 RAG2~/~-derived BM progenitors as affected by VSV8 and its variant L4 peptide. The numbers represent the
percentages of CD45.2" CD8a "V B5" -positive cells. Other details asin A.

injected with the A7Eq,, peptide, the percentage of CFSE™CD8*
cellswas higher than in gp33—41.gy-injected mice, but lower than
in' Y 4S/F6A ~o,-njected mice, consistent with the A7E,, variant
inducing some degree of T cell proliferation. It must be noted that
because the adoptive transfer is into irradiated recipients, donor-
type cell proliferation is significant even in the absence of peptide
administration (31, 36), based on the reduction in the intensity of
CFSE staining of the control (PBSinjected) chimeras (MFI = 121)
as compared with the initial CFSE staining intensity of donor cells
before injection (MFI = 9000).

CD44 - CD8" splenocytes from N15 RAG2 '~ mice were sim-
ilarly labeled with CFSE and transferred into irradiated congenic
hosts, followed by injection of VSV8 or L4 peptides (Fig. 10B). In
the presence of VSV8, no brightly CFSE*CD8" cells were de-
tected in lymph nodes (Fig. 10B) or spleen (data not shown), sug-
gesting that naive N15-specific T cells had undergone proliferation
and AICD in response to the VSV 8 ligand. In contrast, the number
of CFSE*CD8™ T cellsin mice injected with the L4 peptide was
similar to the control group, implying that this peptide caused nei-
ther substantial T cell expansion or AICD. These data suggested
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FIGURE 10. APL variants do not induce donor T cell divisions in the
periphery of irradiated hosts. A, Sorted CD44~CD8" CFSE-labeled P14
RAG2~/~ splenocytes (Ly-5.2; 2 X 10°% were transferred to 7 Gy-irradi-
ated B6 (Ly-5.1) mice. Four days later, gp33—41.q,, variant peptides were
injected i.v. After an additional 4 days, spleen and lymph node cells were
stained with CyChrome-anti-CD8«. Numbers correspond to the percent-
ages of CFSE*CD8a™" cells after gating on 25,000 live cells. Note that
because the absolute number of splenocytes and lymph node cells is com-
parable in al groups, the percentage values are aso representative of cell
numbers. MFI of labeled cells before injection was 8300—9000. One of
three representative independent experiments is shown. B, A total of 2 X
10°-sorted CD44~CD8" CFSE-labeled N15 RAG2 '~ splenocytes (Ly-
5.2) were transferred to 7 Gy-irradiated B6 (Ly-5.1) mice. Four days later,
VSV8 and its variant L4 peptide were injected i.v. and subjected to a
similar protocol as in A. One of two independent experiments is shown.

that cognate peptide ligands gp33—41 and VSV 8, interacting with
the TCR with relatively high affinity, compared with their respec-
tive APL, induce activation of peripheral T cells, whereas peptide
variants Y4S/F6A and L4, which bind TCR with low affinity and
mediate positive selection, do not cause cell divisions.

Discussion
Analysis of Y4S/F6A and A7E peptides in H-2° mice represents
the first examination of the direct effects of amino acid substitu-
tions at the P14 TCR contact residues on thymocyte selection and
activation in vivo. The crystal structure of gp33/H-2DP suggests
that single mutations at both peptide positions 4 (p4) or 6 (p6) directly
affect TCR contacts (20, 21, 37). Those mutants of gp33—41 mediate
positive selection presumably due to weaker pMHC/TCR interactions
(29). In contrast to previous studies, in the present work mutations at
p4 and p6 of gp33—41 were introduced in the same variant, to gen-
erate a positively selecting ligand with reduced TCR affinity to foster
emigration of the developing thymocytes to the periphery. Indeed,
Y4S/F6A o\, Was found to interact with the P14 TCR on SP CD8
thymocytes with an affinity below our detection limit, as judged by
tetramer staining. In contrast to substitutions of amino acids at p4 plus
p6, asingle mutation at p7 did not significantly affect thymocyte sub-
set numbers. However, the A7E,, variant dtered the thymocyte
phenotype (Fig. 2B). Our functional data (Fig. 1) suggest that
ATEcq\ isawesk agonist of gp33—-41. Consistent with the ability of
peptides with the mutation at p7 to interact with the P14 TCR, incu-
bation of P14 thymocytes with A7Sin vitro in FTOC at high molarity
resulted in negative selection (38).

Y 4S/F6A gy, induced up-regulation of the P14 TCR, the CD8B
coreceptor, and the B, integrin levels on SP CD8 thymocytes,
characteristic of positive selection, with no change in the expres-
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sion of other markers for activation/emigration/positive selection,
including CD25, CD44, CD62L, and CD69. Characterization of
RTE has been controversial. Up-regulation of several markers on
SP CD8 thymocytes undergoing positive selection and emigration,
including CD5 (39), B, integrin, CD44 and L-selectin (CD62L)
has been reported (33, 40), whereas others did not observe these
changes (41). Our data further demonstrate the heterogeneity of the
phenotypes of SP CD8 thymocyte subpopulations affected by pos-
itively selecting ligands, as well as difficulties in the precise char-
acterization of the small subpopulation of RTE. In contrast, gp33—
41, led to thymocyte activation and subsequent increase in the
expression of CD44 and CD69, in line with similar observationsin
other models (25, 42, 43), whereas the A7Eq,, led to up-regula-
tion of CD44, 3, integrin and CD8p (Fig. 2B).

The kinetics of reconstitution of irradiated hosts by thymocyte
progenitors from the BM of P14- and N15-TCR transgenic mice
was similar to the findings of Tanchot and Rocha (36). In addition,
we show that thymocyte emigration is dependent on the affinity/
avidity of pMHC/TCR interactions. Peripheral SP CD8 T cells of
the donor phenotype, when transferred into the irradiated hosts
later injected with Y4S/F6A <o, Or L4 ligands, did not expand, as
judged by CFSE staining. “Background” proliferation did occur in
a peptide-independent manner in chimeric hosts due to availability
of niches caused by irradiation (31). These results suggest that
athough the low affinity pMHC/TCR interactions are insufficient
to trigger cell divisions, differentiation nevertheless follows.

The nature and the number of APL involved in positive selec-
tion of MHC class I-restricted T cells and their relationship to
antigenic peptides has been controversial (reviewed in Ref. 3 and
references therein). Although most of the above studies have been
performed in vitro, little is known about mechanisms of positive
selection of CD8 T cells in vivo. Affinity measurements support
the idea that positively selecting peptide ligand affinities are lower
than those of negatively selecting ligands for TCRs, but addition-
ally linked to their MHC binding/stability properties (44). A recent
publication described an antagonist of H-2KP-specific OT-I TCR
and a variant of OVA 257-264 peptide, (E1), endogenously ex-
pressed by cortical epithelial cells of TAP-deficient mice, which
mediated positive selection of CD8" T cells in vivo (45). Our
report supports the idea that weak pMHC class I/TCR interactions
promote positive selection of SP CD8 thymocytes. Certainly the
10,000-fold weaker functional N15 T cell stimulation by L4 vs
VSV 8 peptide is consistent with the view (46). However, because
YA4S/F6A oy in complex with H-2D® has no detectable binding
with the P14 TCR, we cannot exclude the possibility that this
PMHC/TCR interaction is no greater than the basal level of P14
TCR binding to D in general. Two recent studies in class Il
MHC-restricted TCR transgenic mouse systems are also con-
sistent with the notion that weak pMHC ligands may foster
positive selection (47, 48).

Of importance is the observation that Y4S/F6A -, led to an
increase in the number of DP thymocytes, a phenomenon which
has not been reported to occur during positive selection. However,
the binding of Y4S/F6A .o, to D® might possibly prevent other
endogenous negatively selecting thymic peptides from binding and
interacting with the TCR. Consistent with this possibility, we show
that Y4S/F6A .oy, competes for binding to H-2D° with the nega-
tively selecting cognate peptide gp33-41 (Fig. 5).

Collectively, our data show that cognate peptides can be modified
to creste variants that result in selection, directly or indirectly, of de-
sired TCR specificities at the level of thymic development. This ex-
ogenous peptide administration offers a potential of expanding reper-
toire generation in vivo in a manner useful to the organism. Whether
these peptide-specific T cells generate stronger defense mechanisms
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to fight vira infection or tumors in the normal, nontransgenic mouse,
remains to be investigated. In this respect, exploring means of en-
hancing differentiation of thymocytes bearing desired TCRs, together
with the understanding of the mechanism of thymocyte emigration to
the periphery, would be of great importance. Severa agents have been
shown to inhibit thymic export (reviewed in Ref. 49), while a recent
report described factors mediating emigration from the thymus (50).
In the future, combined approach of exposing the subject to a posi-
tively selecting APL plus athymic export-enhancing agent might gen-
erate a practical and efficient protective immunity.
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