Tools
 
  Alignment Analysis
  Databases
  Computational Immunology
  Modelling & 3D-structure     Analysis
  Sequence Manipulation &     Analysis
  Similarity Searches
  View all Tools
 
 Tools    >> MHCLIG
  
Ligand-type specificity of classical and non-classical MHCI molecules
INPUT
Replace example with your sequence/s (FASTA Format)
or Upload sequence/s from file

PREDICTION MODELS
Select the prediction models you want to use
MHCI562 Models
kNN: K-nearest neighbour algorithm 99.91 % Accuracy
SVM-RBFk: Support Vector Machine (SVM) with RBF kernel 99.77 % Accuracy
MHCI556 Models
SVM-RBFk: Support Vector Machine (SVM) with RBF kernel 100.00 % Accuracy
kNN: K-nearest neighbour algorithm 99.94 % Accuracy
SVM-Pk: SVM with Polynomial Kernel 99.46 % Accuracy
MHCI500 Models
SVM-RBFk: Support Vector Machine (SVM) with RBF kernel 100.00 % Accuracy
kNN: K-nearest neighbour algorithm 100.00 % Accuracy
SVM-Pk: SVM with Polynomial Kernel 99.42 % Accuracy
BLAST

    

Comments & Requests:
Citation:
  • Martinez-Naves E, Lafuente EM, Reche PA. Recognition of the ligand-type specificity of classical and non-classical MHC I proteins. FEBS Lett. 2011 Nov 4;585(21):3478-84. doi: 10.1016/j.febslet.2011.10.007. Epub 2011 Oct 10. PMID: 22001201
Hits since November/2008
Last updated:

Contact Us    |   Immunomedicine Group    |